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Abstract--The onset of liquid entrainment during discharge from large reservoirs containing a stratified 
mixture of two immiscible fluids through a side orifice of finite diameter is considered theoretically. A 
previously reported analysis by Craya, in which the orifice was simulated by a point sink, has been 
extended to account for the finite size of the orifice. The model resulting from the present analysis is 
expressed in terms of two simple equations suitable for hand calculations. The ratio of the critical height 
to the orifice diameter is found to be dependent only on Froude number (Fr). The present model 
approaches the correct physical limits at low Fr and it converges to Craya's predictions at high Fr. Some 
experimental verification of the present theoretical trends is also provided. 
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I. INTRODUCTION 

Theoretical correlation of the onset of liquid entrainment during discharge from side orifices was 
first developed by Craya (1949). In his simplified analysis, Craya neglected the effects of viscosity 
and surface tension, assumed potential flow throughout the field and treated the orifice as a point 
sink. With these idealizations, the following criteria were obtained: 

and 

h 
ffi 0.625 Fr 0'4 [1] 

s h 
= 0.8 ~, [21 

where d is the orifice diameter, h is the critical height at the onset of the phenomenon, s is the 
corresponding distance between the tip of the deflected interface and the orifice centreline (see figure 
1), and Fr is the Froude number given by 

with 

Fr = Vd 

W 
I'd = , [3b] (: 

where g is the gravitational acceleration, O is the density of the lighter fluid, Ap is the density 
difference between the two fluids, W is the mass flow rate through the orifice and Va is the mean 
discharge velocity. 

At the lower limit Fr = 0, [1] and [2] predict h = s = 0. Evidently, these are not the appropriate 
limits since the physics of the problem suggest h = s = d/2 at Fr = 0. Therefore, the accuracy of 
[1] and [2] is doubtful at low values of Fr and this behaviour is attributed to the point-sink 
assumption. On the other hand, for conditions of large discharge rates, Craya's model has been 
validated by the results of recent experimental investigations (e.g. Crowley & Rothe 1981; Smoglie 
& Reimann 1986; Schrock et al. 1986; Smoglie et aL 1987; Micaelli & Memponteil 1989). 
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Figure 1. Geometry and the coordinate system. 

Another interesting facet relates to the formulation introduced by Smoglie & Reimann (1986) 
and later adopted by Micaelli & Memponteil (1989), whereby [3a] and [3b] were substituted into [1] 
to give 

h[gP APT2 
L ~  ] = K, [4] 

where K is a constant that has the theoretical value of 0.688. According to [4], the critical height 
h is independent of d for the same g, p, Ap and W. That may be the case when the interface is 
far from the orifice; however, the general applicability of [4] for all values of h/dis not obvious 
to the present authors. 

The points of concern raised above provided the motivation for this study in which the main 
objective is to determine the boundary beyond which [1] and [2] can provide good accuracy. 
In doing so, a more complete model has been developed following Craya's (1949) approach while 
eliminating the point-sink assumption. The present analysis applies to any two immiscible fluids 
with the term "liquid entrainment" referring to the appearance of the heavier fluid in the 
predominantly lighter-fluid flow through the orifice. 

2. ANALYSIS 

In the present flow situation, the lighter fluid is in motion while the heavier fluid is at rest. The 
effects of viscosity and surface tension are assumed to be negligible; thus, the inertia and gravity 
forces are dominant. Steady, incompressible, potential flow is assumed in the lighter fluid and 
equilibrium of the interface is controlled by a balance between the inertia and gravity forces. The 
present analysis follows Craya's (1949) approach, where equilibrium of the interface and the 
velocity field in the lighter fluid are determined first and then equality of the velocity and its gradient 
at linking point B (see figure 1) are later imposed as conditions for the onset of liquid entrainment. 

2.1. Equilibrium of the interface 
Applying the Bernoulli equation on a streamline coincident with the interface from the side of 

the lighter (moving) fluid, we get 
pV 2 

P + T + pgt = C, [5] 

where P is the static pressure, V is the local velocity, t is the local deflection measured from the 
flat interface (shown in figure 1) and C is an arbitrary constant. Along the same streamline from 
the side of the heavier (stationary) fluid, the Bernoulli equation gives 

P + (p + Ap)gt = C. [6] 
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Subtracting [6] from [5], we get 

V 2 Ap 
- -  = - - g t .  [7] 
2 p 

Linking point B corresponds to the location on the interface where t = h - s .  Therefore, at this 
point 

V_~ = A p g ( h  - s). [8] 
2 p 

2.2. Velocity f ield in the lighter f luid 

The presence of the stationary fluid is ignored in this part of the analysis. Therefore, the flow 
field of the lighter fluid is treated as a semiinfinite medium extending over - ~ < r < oo and 
0 ~< z < oo, where r and z are tbe coordinates shown in figure 1. Flow within the medium is caused 
by a discharge with a uniform velocity I'd from the orifice situated at r <<. d/2 and z = 0. Symmetry 
exists around the z-axis; thus, we have a two-dimensional problem with 1I, and V~ representing the 
velocity components in the r and z directions, respectively. Based on the assumptions stated earlier, 
the flow field within the medium can be derived from potential flow theory. 

Applying the continuity equation, we get 

1 (3 (rVr) q- {gV z 
r ar -~z = 0. [9] 

Introducing a scalar potential function ~b, such that 

V, = and V~ = 0-~' [10] 

we get the well-known Laplace equation 

r = u .  

Equation [11] is subject to the following list of boundary conditions: '} --Vd, at z = O, 3-~ = 

d 
= 0  r > ~  

and 

[ll] 

[12a] 

as r --* oo or z --* oo, ~b is finite. [12b] 

The mathematical formulation given by [11] and [12a, b] is identical to that of heat conduction 
in a semiinfinite medium with heat extraction at a constant rate over a circular area of  diameter 
d in the plane z = 0. By analogy to this problem, for which a solution has been developed by 
Carslaw & Jaeger (1959), the potential function can be expressed in the form 

where eigenvalue 2 can be of any magnitude form zero to infinity, and J0 and J~ are Bessel functions 
of  the first kind. The radial velocity at the wall z = 0, II,,0, can be determined by substituting [13] 
into [10]: 

V,0 = f J , ( 2 ) J i ( ~ 2 ) d A .  - - j o  °~ [14] 
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The integral on the right-hand side of [14] cannot be evaluated in closed form. However, using the 
tables of integrals by Gradshteyn & Ryzhik (1980), an easier formulation can be developed as 

t Va ~ , [15al 

where the function F of any independent variable x is given by 

, 
F(x) = 4~5x 2 1 - ~ dy [15b] 

and y is an integration parameter. It is interesting to note that for large values of x, the integral 
in [15b] approaches the value n/2 and, therefore, Vr,0/lid approaches [ -  1/8(r/d) ~] which is identical 
to the velocity profile due to a point sink. Also, a singularity exists at r = d/2 (the edge of the orifice) 
which, fortunately, does not pose any problem in the subsequent analysis. 

Using velocity profile [15a], the kinetic energy at linking point B, located at r = s, takes the form 

2.3. The critical height 

I(:)l V~ V~ F 

-2- = 2 [16] 

We now have two expressions for V2/2, given by [8] and [16], applicable at point B which links 
the interface with the wall of the reservoir. For given values of I'd, g, p, Ap and d, [16] can be 
represented by a certain curve on a V 2/2 vs s plot, while [8] produces a series of parallel straight 
lines depending on the value of h. For large values of h, the straight line and the curve do not 
intersect, while two points of intersection are possible with small values of h. There is one value 
of h that produces a single intersection with the straight line [8] forming a tangent to the curve [16]. 
Following Craya (1949), this value of h is assumed to be the critical height. Therefore, the onset 
of liquid entrainment is characterized by the following two non-dimensional relations: 

and 

h s  E (s)12 ~ -  1Fr2 F [17] 

, ,,8, 
where F'  is the first derivative of F with respect to s, which has the form 

1 y -1~ 

F ' ( d )  = 2n(d)3 ji '  (~--~)°5(1 4~_~)2 ) (1 2 y / 8 ( d ) i )  dy" [19] 

For any given value of s/d > 0.5, the functions F(s/d) and F'(s/d) can be evaluated from [15b] 
and [19], respectively, Fr can be determined from [18] and h/d from [17]. Therefore, both h/d and 
s/d are dependent only on Fr, similar to the form of [t] and [2]. For large values ofs/d, the function 
F(s/d) approaches the value [O.125/(s/d) 2] and F'(s/d) approaches [-0.25/(s/d)3]. Substituting 
these limiting values into [17] and [18], the present model converges to [1] and [2]. 

3. RESULTS AND DISCUSSION 

3. I. Numerical results 
The objective of this section is to compare the results of the present model with those of Craya 

(1949) in order to determine quantitatively the value of Fr beyond which [1] and [2] are not 
influenced by the point-sink assumption. Figure 2 shows the velocity profile along the wall in the 
vicinity of the orifice. The profile given by [15a] approaches infinity at the edge of the orifice and 
it converges to the point-sink profile away from the orifice. From figure 2, it is clear that the two 
models give practically identical results beyond r/d = 2. Therefore, from a theoretical point of view, 
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Figure 2. Velocity distribution along the reservoir wall. 
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Figure 3. Predictions of h/d for orifices and slots. 

the predictions of the present model should be identical to [1] and [2] beyond s/d = 2, whic;~ 
corresponds to h/d = 2.49 and Fr = 30.9. 

The present predictions of hid at different values of Fr are shown in figure 3. In the same figure, 
the results from a recent study by Soliman & Sims (1990) for discharge from side slots of width 
d are shown for comparison. The final correlation from that study characterized the onset of liquid 
entrainment for side slots of finite width by the following relations: 

and 

h , 

d d 2 \ n ]  I 'l] In [201 

1 

- _ 

For both orifices and slots, hid approaches the appropriate limit of 0.5 as Fr approaches 0 and 
the respective prediction from Craya (1949) is approached at high Fr. The deviation between the 
present predictions of h/d and those of [1] is I% at Fr = 30.9, 2.4% at Fr = 10, 16.6% at Fr = 1 
and 106% at Fr = 0.1. Experimentally, this deviation is probably large enough to be detected only 
with Fr < 10. 

The behaviour of the ratio s/h at different values of Fr is illustrated in figure 4 for orifices and 
slots. For both geometries, s/h approaches 1 as Fr approaches 0. At large values of Fr, the ratio 
s/h converges to 2/3 for slots and 0.8 for orifices, as predicted by Craya (1949). 

3.2. Comparison with experimental data 

In a recent investigation by Armstrong et al. (1992, this issue, pp. 217-227), experimental 
measurements were reported for the critical height at the onset of liquid entrainment during 
discharge from a large reservoir through a side orifice with d = 6.35 mm. The experiment was 
conducted using stratified air-water mixtures at 310kPa. A range of discharge flow rates 
corresponding to 1.7 < Fr < 31 was covered in this investigation. Figure 5 shows a comparison 
between these data and the present analysis in terms of h/ho vs Fr, where h0 is the value obtained 
from [1] at any given Fr. This figure shows that over the range 8 < Fr < 31, the experimental value 
of h/ho is nearly constant with a deviation of about 5.5% from Craya's (1949) model. For Fr < 8, 
the trend in the experimental data follow the theoretical prediction of increasing h/ho with 
decreasing Fr. 
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Figure 4. Predictions of s lh  for orifices and slots. 
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Figure 5. Comparison between the present predictions and experimental data by Armstrong et al. (1992). 

4. CONCLUDING REMARKS 

The present analysis eliminates the point-sink assumption utilized in Craya's (1949) work. A new 
model is developed for the onset of liquid entrainment from side orifices, given in terms of two 
simple equations. This model indicates that h/d is uniquely dependent on Fr, irrespective of the 
value of d. Results of the present analysis are applicable for the whole range of Fr, provided that 
the assumptions of negligible viscous and surface tension forces are valid. Values of h/d predicted 
by the present model converge to within 1% of Craya's (1949) predictions for Fr >/30. Significant 
deviations between the two models correspond to Fr < 10, as confirmed by recent experimental 
results. 

Acknowledgement--Financial assistance provided by the Natural Sciences and Engineering Research Council 
of Canada is gratefully acknowledged. 

R E F E R E N C E S  

ARMSTRONG, K. F., PARROTT, S. D., SIMS, G. E., SOLIMAN, H. M. & KRISHNAN, V. S. 1992 
Theoretical and experimental study of the onset of liquid entrainment during dual discharge from 
large reservoirs. Int. J. Multiphase Flow 18, 217-227. 

CARSLAW, H. S. • JAEGER, J. C. 1959 Conduction of Heat in Solids, 2nd edn. OUP, London. 



ANALYSIS OF THE ONSET OF LIQUID ENTRAINMENT 235 

CRAYA, A. 1949 Theoretical research on the flow of non-homogeneous fluids. Houille Blanche 4, 
44-55. 

CROWLEY, C. J. & ROTHE, P. H. 1981 Flow visualization and break mass measurements in small 
break separate effect experiments. Presented at the ANS Special. Mtg on Small Break Loss of 
Coolant Accident Analyses in LWRs, Monterey, CA. 

GRADSHTEYN, I. S. & RYZ~K, I. M. 1980 Table of Integrals, Series and Products. Academic Press, 
New York. 

MICAELLI, J. C. dk MEMPONTEIL, A. 1989 Two phase flow behavior in a tee-junction: the CATHARE 
model. In Proc. 4th Int. Top. Mtg on Nuclear Reactor Thermal-hydraulics, Karlsruhe, Germany, 
Vol. 2, pp. 1024-1030. 

SCHROCK, V. E., REVANKAR, S. T., MANNHEIMER, R., WANG, C.-H. & JIA, D. 1986 Steam-water 
critical flow through small pipes from stratified upstream regions. In Proc. 8th Int. Heat Transfer 
Conf., San Francisco, CA, Vol. 5, pp. 2307-2311. 

SMOGLIE, C. & REIMANN, J. 1986 Two-phase flow through small branches in a horizontal pipe with 
stratified flow. Int. J. Multiphase Flow 12, 609-625. 

SMOGLIE, C., REIMANN, J. d~ MULLER, U. 1987 Two phase flow through small breaks in a horizontal 
pipe with stratified flow. Nucl. Engng Des. 99, 117-130. 

SOLIMAN, H. M. & SIMS, G. E. 1990 Theoretical analysis of the onset of liquid entrainment for slots 
of finite width. Presented at the 6th Miami Int. Symp. on Heat and Mass Transfer, Miami, FL. 
Also published in Int. J. Heat and Fluid Flow 12, 360-364 (1991). 

MF 18/2--I: 


